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a  b  s  t  r  a  c  t

A  membrane  sequencing  batch  reactor  (MSBR)  treating  hypersaline  oily  wastewater  was  modeled  by
artificial  neural  network  (ANN).  The  MSBR  operated  at different  total  dissolved  solids  (TDSs)  (35,000;
50,000;  100,000;  150,000;  200,000;  250,000  mg/L),  various  organic  loading  rates  (OLRs)  (0.281,  0.563,
1.124,  2.248,  and  3.372  kg COD/(m3 day))  and  cyclic  time  (12,  24,  and  48  h).  A feed-forward  neural  network
trained  by  batch  back propagation  algorithm  was  employed  to model  the  MSBR.  A set  of  193  operational
eywords:
embrane bioreactor

rtificial neural network
ypersaline oily wastewater
alophilic microorganisms
odeling

data  from  the  wastewater  treatment  with  the MSBR  was  used  to train  the  network.  The  training,  vali-
dating  and  testing  procedures  for the  effluent  COD,  total  organic  carbon  (TOC)  and  oil  and  grease  (O&G)
concentrations  were  successful  and  a good  correlation  was  observed  between  the  measured  and  pre-
dicted  values.  The  results  showed  that at OLR  of  2.44 kg COD/(m3 day),  TDS  of  78,000  mg/L  and  reaction
time  (RT)  of  40  h,  the  average  removal  rate  of  COD  was  98%.  In  these  conditions,  the  average  effluent  COD
concentration  was  less  than  100  mg/L  and  met  the  discharge  limits.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Many industries generate billions of gallons of wastewaters con-
aining organic matter and high concentrations of NaCl (>3.5%,
/v). For example, large volumes of oil contaminated wastewa-

er are produced during extraction, transportation and refinery of
rude oil [1].  Oilfield wastewater or “produced water” is the largest
igh salinity and oily wastewater generated during oil production
ctivities. The salt, oil and grease (O&G) and total organic carbon
TOC) concentration of oilfield produced water varies from a few
arts per thousand to that of saturated brine [2];  2–565 mg/L; and
5–1500 mg/L, respectively [3].

Discharging untreated produced water can pollute surface and
nderground water and soil. The permitted O&G limits for treated
roduced water discharging from offshore facilities in the United
tates are 42 mg/L daily maximum and 29 mg/L monthly average
4].  To reduce the pollution load, many countries have implemented
ore stringent discharge limits. The monthly average discharge
imits of COD and O&G of treated produced water prescribed by

∗ Corresponding author. Tel.: +60 3 89466304; fax: +60 3 86567120.
E-mail address: fakhrul@eng.upm.edu.my (A. Fakhru’l-Razi).

304-3894/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2011.05.052
the Peoples Republic of China are 100 and 10 mg/L, respectively
[5].

Some physical and chemical methods such as photo-
electrocatalytic decontamination, hydrocyclones, coagulation
and flocculation and membrane filtration have been investigated
to remove hydrocarbons from oily wastewaters [6].  Generally,
biological treatment of wastewater is the most cost-effective alter-
native when compared to other treatment technologies. However,
the salinity of hypersaline wastewaters affects the metabolism of
microorganisms in activated sludge systems due to plasmolysis
whereas halophilic microorganisms are usually able to survive
in hypersaline environments [7].  SBR is a promising biological
treatment system because of its flexibility and ease of operation [8].

At high concentration of NaCl, microorganisms exhibit poor
settleability and cause high turbidity of the SBR effluents [9].  A
membrane coupled biological process as a separation step is able
to retain microorganisms in the bioreactor [10]. Membrane biore-
actor (MBR) has many advantages including high effluent quality,
small footprint, high mixed liquor suspended solids (MLSS) concen-
tration, good disinfection capability, and high volumetric loading

[11].

Due to the rising concern about environmental issues, the
control and proper operation of wastewater treatment plants to
meet stringent effluent limitations have become very important.

dx.doi.org/10.1016/j.jhazmat.2011.05.052
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:fakhrul@eng.upm.edu.my
dx.doi.org/10.1016/j.jhazmat.2011.05.052
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7 using NaOH. All of the chemicals used in this study were of
technical grade. Crude oil was  collected from Malaysia oilfields
(Petronas BCOT, Sarawak). Synthetic produced water was pre-
pared in a homogenizer (KIKA labortechnik, Staufen, Germany)

Table 1
UF characteristics and the MSBR operating conditions.

UF (FP200)

Material Polyvinylidene difluoride (PVDF)
Tube diameter 1.25 cm
Length 30 cm
Molecular cut-off weight
(MWCO)

200,000 Dalton

Membrane area 0.012 m2

Agitation speed 300 rpm
Fig. 1. Schematic

reatment process models are essential tools to assure proper
peration and better control of wastewater treatment plants [12].
he ability of artificial neural networks (ANNs) in the model-
ng of complex systems that have nonlinear characteristics has

ade them the most popular tool for modeling of biological
rocesses [13].

In recent years, ANNs have been used for monitoring [14], con-
rolling [15], classification [16] and simulation [17–19] of activated
ludge processes of wastewater treatment plants. In the literature
o date, a limited number of applications of ANNs have been made
o MBRs for modeling of a plant operation [20,21]. Geissler et al.
20] used an ANN model to predict the filtration performance in

 submerged capillary hollow fiber membrane treating municipal
astewater. Cinar et al. [21] have also proposed an ANN model for

 submerged MBR  treating cheese whey and evaluated its perfor-
ance at different sludge residence time (SRT).
Up till now, there have been only few investigations on treating

roduced water by MBRs. Furthermore, no attempt has been made
n the modeling of the produced water treatment systems.

In this study, ANN was used to model the performance of
 membrane sequencing batch reactor treating hypersaline oily
astewater at different organic loading rate (OLR), reaction time

RT) and total dissolved solid (TDS) in order to predict the effluent
haracteristics to meet the effluent discharge standards.

. Materials and methods

.1. Experimental setup

A 5-L fermenter (Biostat-B.Braun Biotech International, Melsun-
en, Germany) was used as the SBR (Fig. 1). Dissolved oxygen (DO),
H, temperature, aeration, and agitation were microprocessor con-
rolled. Aeration was provided by using an air compressor and a

parger. The synthetic wastewater was fed by a peristaltic pump
Peristaltic pump model: Watson-101U/R, Watson-Marlow, UK).

ixed liquor was pumped through two tubular crossflow ultra-
ltration (UF) membrane modules (MIC-RO 240, PCI membrane
erimental setup.

systems, UK) and recycled back to the bioreactor. The microorgan-
isms separated by the membranes were returned to the bioreactor.
Permeate flux was  measured gravimetrically with an electronic
balance (Tanita KD-200, Tanita Corporation, Tokyo, Japan). Table 1
shows the UF characteristics and the membrane sequencing batch
reactor (MSBR) operating conditions.

2.2. Synthetic wastewater preparation

In order to determine the response of the MSBR system under
controlled conditions, synthetic wastewater was used during the
whole study. Based on halophilic medium proposed by other
researchers [7,22],  produced water was simulated. The synthetic
produced water composition (TDS of 35,000 mg/L) in mg/L is shown
in Table 2.

For TDS concentrations of 50,000, 100,000, 150,000, 200,000,
and 250,000 mg/L, NaCl was added at concentration of 46,000,
96,000, 146,000, 196,000, and 246,000 mg/L, respectively. The com-
position of the wastewaters gave a C/N/P ratio of approximately
100/10/1 by adding NH4Cl and KH2PO4. The pH was adjusted to
MSBR operating
conditions

DO 3 mg/L
Crossflow velocity 2 m/s
Temperature 30 ◦C
Transmembrane pressure 2 bar
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Table  2
Chemical composition of the synthetic produced water.

Chemical NaCl CaCl2·2H2Oa KCl MgCl2·6H2Ob NaHCO3 NH4Cl KH2PO4

mg/L 31,173 60 2,000 50 800 860 99
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a Excluding the water of crystallization: 45 mg/L.
b Excluding the water of crystallization: 23 mg/L.

y mixing salts and crude oil in a 5-L propylene container for
4 h (2400/min) to achieve equilibrium between the oil and water
hases [23]. Biochemical oxygen demand (BOD), COD and O&G of
ynthetic produced water (1 mL  oil/L) were 645, 2250 and 350 mg/L,
espectively.

.3. Culture selection

Hypersaline soil from Morib onshore in Malaysia served as a
ource of halophilic microorganisms. Isolation of microorganisms
apable of degrading crude oil in the hypersaline-produced water
egan by placing approximately 6 g of soil into 200 mL  of synthetic
roduced water (1 mL  oil/L and TDS of 35,000 mg/L). After 15 days of
ixing on a shaker table (150/min, 30 ◦C), a 2 mL  sample of the mix-

ure was transferred to a fresh medium. After the three steps, the
esulting mixture was free of soil [7].  The culture was transferred
onthly to fresh medium for six months [22,24].

.4. Startup of the SBR

The SBR was inoculated with the isolated microorganism’s
ulture. After inoculation, the bioreactor was operated with syn-
hetic produced water to increase the biomass concentration to
000 mg/L. The reactor was operated at different operating condi-
ions and the temperature was kept constant at 30 ◦C. The operation

ode was 12, 24, and 48 h cycles. The 24 h mode cycle consisted
f three stages: 1 h of feeding time, 20 h of reacting time, and 3 h
f decanting time. In the last stage, 2.5 L permeate was withdrawn
rom the bioreactor. In this study, the membrane chemical cleaning
NaOCl 0.5%, w/v, and HCl 0.5%, w/v) and sonication was carried out
hen flux declined to a value almost 40 L/(m2 h). After the cleaning,

he decanting time was reduced to 1.5 h.

.5. Effect of OLR, TDS and RT

In this experiment, OLR was increased in a stepwise mode in
ifferent stages. Characteristics of the raw wastewater at differ-
nt stages are presented in Table 3. The possible adverse effects
f salt concentration on microbial activity were studied where
iological treatment of synthetic produced water was  conducted
ver different TDS levels (50,000, 100,000, 150,000, 200,000 and
50,000 mg/L). In order to study the effect of RT on the MSBR-
roduct quality, the fermenter was started up again as in the
revious section and three cycle times of 12, 24, and 48 h (corre-
ponding to hydraulic residence time (HRT) of 24 h, 48 h, 96 h) were
tudied.

.6. Oil in mixed liquor

In order to measure the accumulation of undigested crude oil in
he activated sludge, extraction of hydrocarbons from bioreactor

ixed liquor samples were performed by shaking 5 mL  sample and
0 mL  dichloromethane vigorously for 10 min. The extracts were

ltered through anhydrous sodium sulfate to remove water. The
amples were filtered through a 0.45-�m pore size Teflon mem-
rane. Then the samples were dried and weighed on an analytical
alance [25].
Fig. 2. Structural organization of the neural network used for the estimation of
effluent characteristics.

2.7. Analytical methods

Since the chloride concentration was high, the COD of the sam-
ples was determined according to the Freire and Sant’Anna [26]
method. MLSS, mixed liquor volatile suspended solids (MLVSS), and
O&G were determined according to the standard methods [27]. The
TOC was  measured by a TOC analyzer (Shimadzu, Kyoto, Japan).

2.8. Model development

A software package of NeuralPower version 2.5, CPC-X Software,
USA, was applied in this study. A set of 193 operational data from
the synthetic produced water treated with the MSBR was used to
train the network.

Multilayer normal feedforward neural network was used in
order to predict the performance of the MSBR treating the syn-
thetic produced water. The networks were trained by different
learning algorithms (incremental back propagation, IBP; batch back
propagation, BBP; Levenberg–Marquardt algorithm, LM;  genetic
algorithm, GA; and quickprob, QP). The developed network con-
sisted of three layers including input layer that comprised four
nodes, which were experiment day, RT, OLR and TDS; one hid-
den layer consisting of several nodes, which were varied to obtain
the best model and the output layer that had four output nodes
(which were TOC, COD, oil in sludge and MLSS). The structure of the
proposed ANN used for prediction of the effluent characteristics is
shown in Fig. 2.

The transfer function determines the input–output behavior and
adds nonlinearity and stability to the network [28]. The transfer
function of the hidden and output layers (sigmoid, hyperbolic tan-
gent function, gaussian, linear, threshold linear and bipolar linear)
was  iteratively determined by developing several networks. The
best transfer function for the hidden layer was  found to be hyper-
bolic tangent (tanh) function while the best transfer function for the
output layer was a sigmoid one. Each network was  trained until the
network average root mean squared error (RMSE) was  minimum
and coefficient of determination (R2) was equal to 1. Other param-
eters for network were chosen as the default values of the software

(learning rate = 0.1 and momentum = 0.4).

The weights were initialized with random values and adjusted in
order to minimize the network error. A second set of validation data
was  used to evaluate the quality of the network during training. In
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Table 3
Synthetic oily wastewater characteristics at different OLR, TDS and RT.

Time (day) mL  oil/L Hydrocarbon (mg/L) COD (mg/L) RT OLR (kg COD/(m3 day)) O&G (mg/L) TOC (mg/L)a TDS (mg/L)

Effect of OLR

1–15 0.25 204.5 562.5 20 0.281 87.5 137 35,000
16–30 0.5  409 1,125 20 0.563 175 275 35,000
31–45  1 818 2,250 20 1.124 350 550 35,000
46–60  2 1,636 4,500 20 2.248 700 1,100 35,000
61–75  3 2,454 6,750 20 3.372 1,050 1,650 35,000

Effect of TDS

76–90 1 818 2,250 20 1.124 350 550 50,000
91–105  1 818 2,250 20 1.124 350 550 100,000

106–120 1 818 2,250 20 1.124 350 550 150,000
121–135 1 818 2,250 20 1.124 350 550 200,000
136–150  1 818 2,250 20 1.124 350 550 250,000

151–165 1 818 2,250 20 1.124 350 550 35,000
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Effect of RT 176–180  1 818 2,250 

181–195  1 818 2,250 

a Calculated.

ddition, the performance of the trained network was estimated
ased on the accuracy of the network on the test dataset which
as unseen by the developed network during training. For opti-
ization of the conditions, GA was used. GA is an adaptive search

lgorithm based on the principles of biological evolution, such as
atural selection and genetic inheritance. In the GA, each solution
o a given problem is encoded as a chromosome, which evolves over
ime towards a better solution. Some of the advantages of GA over
he conventional optimization methods are short calculation time,
exibility, robustness and high convergence property [29]. The use
f GA requires the choice of a set of operational parameters such
s population size, mutation rate and crossover rate. In this study,
he GA parameters were set at the default values of the software.

.9. Verification of the model

The performances of the ANN models were measured by R2

nd RMSE between the predicted values of the network and the
xperimental values, which were calculated by Eqs. (1) and (2),
espectively.

2 = 1 −
∑n

i=1(y∗
i

− y(i)
p )

2

∑n
i=1(y∗

i
− ȳ)2

(1)

MSE =

√√√√1
n

n∑
i=1

(y(i)
p − y∗

i
)
2

(2)

here ȳ is the average of y over the n data, and y∗
i

and y(i)
p are the

th target and predicted responses, respectively.

. Results and discussion

.1. Artificial neural network modeling of the MSBR

The goal of iterative neural network training is to update the
etworks’ weights to minimize the difference between the net-
ork output and the desired output. Various feedforward neural
etworks (FNNs) were trained using different learning algorithms

or the estimation of the characteristics of the synthetic produced
ater treated by the MSBR. The best algorithm was found to be BBP
ith an average R2 of 0.97339 and RMSE 89.385. The learning was

ompleted after 10,000 iteration steps.
Back propagation (BP) is a commonly used algorithm that
earches for the minimum of error function in weight space using
he method of gradient descent [30]. Each iteration in BP involves
wo phases: forward activation with the computation of error, and
ackward propagation of the computed error to modify the weights
8 1.124 350 550 35,000
44 1.124 350 550 35,000

[31]. The difference between BBP and standard BP learning algo-
rithm lies in timing of the weight update. The weight update of
the standard BP is performed after each single input data while for
the BBP, the update step with accumulated weight changes is per-
formed after full presentation of all training patterns [32]. In fact,
the BBP is smoother in converging compared to that of the stan-
dard BP and is best suited for nonlinear regression [33]. In order to
minimize the total error of the network trained by BBP, the weights
are adjusted according to the following equation [34,35]:

�wji(n) = −� × ∂e

∂wji
+ a × �wji(n − 1) (3)

where e is error function being minimized, wji is a generic weight
in the network,  ̨ is a momentum factor, � is the learning rate or
step size parameter and n and n − 1 are two  successive iterations.

Because gradient decent usually slows down near minima, so
the Levenberg–Marquardt (LM) method can be used to obtain faster
convergence. LM is a blend of simple gradient descent and the
Gauss–Newton method. The algorithm for parameter updating is
presented by the following equation:

�w = −[JT J + �I]
−1

JT ε (4)

where ε = [e1 e2 . . . eP]T is the error vector. � is a positive constant,
I is the identity matrix and J is the Jacobian matrix given by:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂e1

∂w1

∂e1

∂w2
...

∂e1

∂wN

∂e2

∂w1

∂e2

∂w2
...

∂e2

∂wN
.
.

.

.
...
...

.

.
∂eP

∂w1

∂eP

∂w1
...

∂eP

∂wN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

LM has found to be the fastest method for training moderate-
sized feedforward neural networks, where the training rate is 10 to
100 times faster than the usual gradient descent backpropagation
method [36]. However, when the number of network weights is
large, the requirement for computation and memory becomes sig-
nificant. Since in LM algorithm, inversion of square matrix JTJ + �I
is involved thus a large memory space is required to store the Jaco-
bian matrix and the Hessian matrix (JTJ) along with inversion of
approximated Hessian matrix in each iteration [34]. In this study,
LM showed considerable thrashing (rise and fall in error rate),
which slowed the conversion. This problem could be due to the

large memory overheads. Therefore, BBP was  selected as the best
algorithm for training the network.

Convergence rate and complexity of a model strongly depends
on the type of transfer function applied [37]. The best transfer
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Fig. 3. Correlation between the experimental data and predicted value

unction can be selected easily by trial and error. In this research,
mong all employed transfer functions for hidden layers, tanh
howed a better performance. The output layer contains sigmoid
ransfer function which produces a continuous value in the 0–1
ange.

Finding the optimal number of neurons in hidden layer(s) is
rucial for processing capability of the network and accuracy of
eveloped models [38]. Too few hidden neurons limit the ability of
he network to model the process whereas excessive hidden neu-
ons lead to poor generalization for untrained data [31]. Although
everal approximation methods for determining the number of
eurons in hidden layers are presented, the optimal number of
eurons is usually determined by trial and error [39]. In this study,
he optimum number of neurons was chosen on the base of R2 and
MSE of the network. In order to find optimum number of neurons,
ix different 4-x-4 architectures (x changes from 6 to 11) were used.
he optimum number of hidden neurons was found to be 9. Table 4
resents the corresponding average R2 and RMSE for the network
rained with BBP with respect to the training data when the num-
er of neurons is varied. Correlation between the experimental data
nd the predicted values of the final trained ANN model with 9 hid-
en neurons is shown in Fig. 3. The scatter plots show that for all
he four parameters, the predictive capability was satisfactory and
he linear adjustment between actual and predicted values gives

lmost a slope equal to 1.

able 4
odeling error with respect to training data.

Model Average R2 Average RMSE

4-6-4 0.97024 113.450
4-7-4 0.97330 91.458
4-8-4 0.97347 90.729
4-9-4 0.97339 89.385
4-10-4 0.97299 93.859
4-11-4 0.96504 206.090
e ANN model used for prediction of COD, TOC, MLSS, and oil in sludge.

3.2. Variation of effluent parameters at different stages

Fig. 4 shows the effluent characteristics variations at different
experimental stages. In this study, the effect of OLR was  investi-
gated at the cycle time of 24 h. During the experiment, OLR was
increased from 0.281 to 3.372 kg COD/(m3 day) corresponding to
the influent COD and TOC concentrations from 562.5 to 6750 and
137 to 1650 mg/L, respectively (Fig. 4a and b). At the lowest OLR
of 0.281 kg COD/(m3 day), minimum effluent COD and TOC  concen-
trations were observed. With an increase in the COD concentration
from 562.5 to 6750, the average COD concentration of the effluent
increased from 37.9 to 184.3 mg/L. According to Fig. 4b, at the TDS
concentration lower than l00,000 mg/L, the permeate COD concen-
tration was less than 100 mg/L. At higher TDS, the COD  increased
and reached the maximum COD value of 238 mg/L at the highest
TDS.

It was  observed that MLSS concentration increased from
1560 mg/L to 7950 mg/L during 75 days and the oil concentration
in the sludge increased from 571 mg/L to 6005 mg/L (Fig. 4c and d).
The decreasing trend of concentration of the oil trapped inside the
sludge flocs was  observed when TDS was  less than 100,000 mg/L,
and it was increased at higher TDS. It may  be concluded that salin-
ity can reduce the biological degradation rate of hydrocarbons. The
isolated microorganisms played significant role for biodegradation
of hydrocarbons. In this study, bacteria of the genera Pseudomonas,
Ochrobactrum, Corynebacterium and Bulkhorderi were identified.
Identification of the isolated microorganisms was explained in
detail elsewhere [9].

At RT of 44 h, the average UF-permeate COD and TOC concen-
trations were lower than 48 and 12 mg/L, respectively. It may be
concluded that, short contact time between microorganisms and
food affects biodegradation of organic matter. The results also
showed that higher RT affects oil concentration in sludge. At RT of 8

and 20 h, accumulation of crude oil was observed up to 2110 mg/L
and it was decreased to 1321 mg/L at the highest RT. This indi-
cated that although the removal efficiency of the organic matters
at lower RT was  acceptable, the high concentration of oil trapped
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Fig. 4. Actual and predicted effluent variations: (a) TOC, (b

nside sludge flocs might influence the treatment system at longer
ime, so a higher HRT could provide a sustained treatment system.

It should be mentioned that at RT of 8 h, the accumulation of
70 mg  of crude oil in the sludge was observed in comparison with
he total of 4090 mg  of crude oil fed into the bioreactor per day. At RT
f 44 h, the decreasing trend proved the ability of the microorgan-
sms to degrade crude oil. It was also inferred that no toxic or non-
iodegradable compounds had accumulated in the bioreactor [40].

From Fig. 4, a good correlation can be observed between actual
ata and values predicted by the model. The network perfor-
ance was also investigated with respect to validating, and testing

atasets. The R2 and RMSE for validating dataset were 0.99795
nd 0.460326, respectively, while for the testing data set, R2 was
.99499 and RMSE was 0.622540. The results show that the devel-
ped BPP network is properly capable of learning the relationship
etween the input and output parameters and therefore could be
mployed in the further part of the study.

.3. Effect of parameters
The importance of the parameters was obtained by summing
he absolute weights of the connections from the input neu-
ons to all neurons in the hidden layer. The operative variables
, (c) MLSS and (d) oil in sludge (predicted , actual ------).

affected the effluent characteristics with an order of contribution
OLR > RT > TDS. As shown in three dimensional plots obtained by
ANN analysis, all the variables had significant effect on the treat-
ment efficiency (Fig. 5). Fig. 5a shows the effect of OLR and TDS
and their interaction on COD of the effluent. As shown in the figure,
minimum COD was  achieved when TDS and OLR were at the lowest
values. Similar trend was achieved for TOC (Fig. 5b).

Fig. 5c shows the effect of OLR and RT and their interaction
on the oil in sludge. Minimum accumulation of oil in sludge was
achieved when RT was  34 h. Therefore, for sustainable operating of
the system and to prevent the accumulation of trapped hydrocar-
bons inside bioreactor sludge, the bioreactor RT should be longer
than 34 h. In this research, it was observed that during whole exper-
iment, O&G concentration was  less than 5 mg/L, so based on EPA
limit [4],  the treated wastewater can be discharged into the sea
and it also can be used to re-inject into oil-wells to enhance oil
recovery [41].

3.4. Optimization of the effluent COD for discharging to

environment

Based on the most stringent discharge limits, COD should be
less than 100 mg/L for discharging to sea [5].  Table 5 shows some
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Table  5
Some optimum conditions for obtaining a COD less than 100 mg/L.

Input variable Output

OLR (kg COD/(m3 day)) TDS (mg/L) RT (h) Predicted COD (mg/L) Actual COD (mg/L)

4 

6 

o
b
o
h
t
a

t
i

F
m

2.44 78,000 40.
0.9  164,000 8 

0.281  56,500 11.

ptimum conditions for obtaining a COD less than 100 mg/L. It can
e seen that the system is able to treat the wastewater at high OLR
f 2.44 (kg COD/(m3 day) and TDS of 78,000 mg/L during 40.4 h. At
igher TDS, lower concentration of organic matter should be fed to
he bioreactor. In this part, a good correlation between the actual

nd predicted values with a R2 value of 0.9822 was  obtained.

Generally, based on the optimization results, in order to con-
rol the effluent characteristics to meet discharge standard limits,
nfluent wastewater can be pretreated chemically when initial TDS

ig. 5. Three dimensional plot showing the effect of individual parameters and their
utual interactions on the characteristics of oil in sludge, COD and TOC.

[

[

[

[

[

[

100.2 95.3
98.2 92.4
42.2 48.5

is low and initial OLR is high. In addition, when initial OLR is low
and initial TDS is more than 100,000 mg/L, the raw wastewater can
be diluted to reduce inhibition effect of NaCl.

4. Conclusions

A membrane sequencing batch reactor inoculated with isolated
halophilic microorganisms was  used for the treatment of hyper-
saline oily wastewater. The training of an artificial neural network
with operational data from the MSBR has been successful. The
results of this study show that ANN-GA can easily be applied to
evaluate the performance of a membrane bioreactor even though it
involves the highly complex physical and biochemical mechanisms
associated with the membrane and the microorganisms.
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